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Föhringer Ring 6, 80805 München, Germany, and

Universität Hamburg, II Institut für Theoretische Physik and DESY, Hamburg

Luruper Chaussee 149, 22761 Hamburg, Germany

E-mail: wess@mail.desy.de

Abstract: We discuss a deformation of the Hopf algebra of supersymmetry (SUSY) trans-

formations based on the special choice of twist. As usual, algebra itself remains unchanged,

but the comultiplication changes. This leads to the deformed Leibniz rule for SUSY trans-

formations. Superfields are elements of the algebra of functions of the usual supercoordi-

nates. Elements of this algebra are multiplied by using the ⋆-product which is noncommu-

tative, hermitian and finite when expanded in power series of the deformation parameter.

Chiral fields are no longer a subalgebra of the algebra of superfields. One possible defor-

mation of the Wess-Zumino action is proposed and analyzed in detail. Differently from

most of the literature concerning this subject, we work in Minkowski space-time.

Keywords: Superspaces, Non-Commutative Geometry.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep122007059/jhep122007059.pdf

mailto:dimitrij@to.infn.it
mailto:rvoja@phy.bg.ac.yu
mailto:wess@mail.desy.de
http://jhep.sissa.it/stdsearch


J
H
E
P
1
2
(
2
0
0
7
)
0
5
9

Contents

1. Introduction 1

2. Undeformed SUSY transformations 2

3. Twisted SUSY transformations 5

4. Chiral fields 7

5. Deformed Wess-Zumino Lagrangian 10

6. Equations of motion 14

7. Deformed Poincaré invariance 16
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1. Introduction

It is well known that Quantum Field Theory (QFT) encounters problems at very high

energies and very short distances. This suggests that the structure of space-time has to be

modified at these scales. One possibility to modify the structure of space-time is to deform

the usual commutation relations between coordinates; this gives a noncommutative (NC)

space [1]. Different models of noncommutativity were discussed in the literature. One of

the simplest examples is the θ-deformed or canonically deformed space-time [2] with

[xm, xn] = iθmn. (1.1)

Here θmn is a constant antisymmetric matrix. Gauge theories were defined and analyzed

in details in this framework [3]. Also, a deformed Standard Model was formulated [4] and

renormalizability properties of field theories on this space are subject of many papers [5].

More complicated deformations of space-time, such as κ-deformation [6] and q-

deformation [7] were also discussed in the literature.

In order to understand the physics at very small scales better, in recent years at-

tempts were made to combine supersymmetry with noncommutativity. In [8] the au-

thors combine SUSY with the κ-deformation of space-time, while in [9] SUSY is combined

with the canonical deformation of space-time. In series of papers [10 – 12] a version of

non(anti)commutative superspace is defined and analyzed. The anticommutation relations

between the fermionic coordinates are modified in the following way

{θα ⋆, θβ} = Cαβ, {θ̄α̇
⋆, θ̄

β̇
} = {θα ⋆, θ̄α̇} = 0 , (1.2)
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where Cαβ = Cβα is a complex, constant symmetric matrix. Such deformation is well

defined only in Euclidean space where undotted and dotted spinors are not related by the

usual complex conjugation. Note that the chiral coordinates ym = xm + iθσmθ̄ commute

in this setting.

In [11] the notion of chirality is preserved, i.e. the deformed product of two chiral

superfields is again a chiral superfield. On the other hand, one half of N = 1 supersymmetry

is broken and this is the so-called N = 1/2 supersymmetry. Another type of deformation

is introduced in [12]. There the product of two chiral superfields is not a chiral superfield

but the model is invariant under the full supersymmetry. The Hopf algebra of SUSY

transformations is deformed by using the twist approach in [13]. Examples of deformation

that introduce nontrivial commutation relations between chiral and fermionic coordinates

are discussed in [14]. Some consequences of nontrivial (anti)commutation relations on

statistics and S-matrix are analyzed in [15].

In this paper we apply a twist to deform the Hopf algebra of SUSY transformations.

However, our choice of the twist is different from that in [13] since we want to work in

Minkowski space-time. As undotted and dotted spinors are related by the usual complex

conjugation, we obtain

{θα ⋆, θβ} = Cαβ, {θ̄α̇
⋆, θ̄β̇} = C̄α̇β̇ , {θα ⋆, θ̄α̇} = 0 , (1.3)

with C̄
α̇β̇

= (Cαβ)∗. Our main goal is the formulation and analysis of the deformed Wess-

Zumino Lagrangian.

The paper is organized as follows: In section 2 we review the undeformed supersym-

metric theory to establish the notation and then rewrite it by using the language of Hopf

algebras. We follow the notation of [16]. By twisting the Hopf algebra of SUSY transfor-

mations, a Hopf algebra of deformed SUSY transformations is obtained in section 3. As the

algebra itself remains undeformed, the full N = 1 SUSY is preserved. On the other hand,

the comultiplication changes and that leads to a deformed Leibniz rule. As a consequence

of the twist, a ⋆-product is introduced on the algebra of functions of supercoordinates.

Sections 4 and 5 are devoted to the construction of a deformed Wess-Zumino Lagrangian.

Since our choice of the twist implies that the ⋆-product of chiral superfields is not a chiral

superfield we have to use (anti)chiral projectors to project irreducible components of such

⋆-products. In the section 6 the auxiliary fields are integrated out and the expansion in the

deformation parameter of the ”on-shell” action is given. Some consequences of applying

the twist on the Poincaré invariance are discussed in the section 7. Two examples of how to

apply the deformed Leibniz rule when transforming ⋆-products of fields are given. Finally,

we end the paper with some short comments and conclusions.

2. Undeformed SUSY transformations

The undeformed superspace is generated by x, θ and θ̄ coordinates which fulfill

[xm, xn] = [xm, θα] = [xm, θ̄α̇] = 0,

{θα, θβ} = {θ̄α̇, θ̄
β̇
} = {θα, θ̄α̇} = 0, (2.1)
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with m = 0, . . . 3 and α, β = 1, 2. These coordinates we call the supercoordinates, to

xm we refer as to bosonic and to θα and θ̄α̇ we refer as to fermionic coordinates. Also,

x2 = xmxm = −(x0)2 + (x1)2 + (x2)2 + (x3)2, that is we work in Minkowski space-time

with the metric (−,+,+,+).

Every function of the supercoordinates can be expanded in power series in θ and θ̄.

Superfields form a subalgebra of the algebra of functions on the superspace. For a general

superfield F (x, θ, θ̄) the expansion in θ and θ̄ reads

F (x, θ, θ̄) =f(x) + θφ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) + θσmθ̄vm

+θθθ̄λ̄(x) + θ̄θ̄θϕ(x) + θθθ̄θ̄d(x). (2.2)

All higher powers of θ and θ̄ vanish since these coordinates are Grassmanian.

Under the infinitesimal SUSY transformations a general superfield transforms as

δξF = (ξQ + ξ̄Q̄)F, (2.3)

where ξ and ξ̄ are constant anticommuting parameters and Q and Q̄ are SUSY generators

Qα = ∂α − iσm
αα̇θ̄α̇∂m , (2.4)

Q̄α̇ = ∂̄α̇ − iθασm
αβ̇

εβ̇α̇∂m . (2.5)

Using the expansion (2.2) one can calculate the transformation law of the component fields

δξf = ξαφα + ξ̄α̇χ̄α̇, (2.6)

δξφα = 2ξαm + σm
αα̇ξ̄α̇(vm + i(∂mf)), (2.7)

δξχ̄
α̇ = 2ξ̄α̇n + σ̄mα̇αξα( − vm + i(∂mf)), (2.8)

δξm = ξ̄α̇λ̄α̇ +
i

2
ξ̄α̇σ̄mα̇α(∂mφα), (2.9)

δξn = ξαϕα +
i

2
ξασm

αα̇(∂mχ̄α̇), (2.10)

σm
αα̇δξvm = −i(∂mφα)ξβσm

βα̇ + 2ξαλ̄α̇ + iσm
αβ̇

ξ̄β̇(∂mχ̄α̇) + 2ϕαξ̄α̇, (2.11)

δξλ̄
α̇ = 2ξ̄α̇d + iσ̄lα̇αξα(∂lm) +

i

2
σ̄lα̇ασm

αβ̇
ξ̄β̇(∂mvl), (2.12)

δξϕα = 2ξαd + iσl
αα̇ξ̄α̇(∂ln) − i

2
σl

αα̇σ̄mα̇βξβ(∂mvl), (2.13)

δξd =
i

2
ξασm

αα̇(∂mλ̄α̇) − i

2
(∂mϕα)σm

αα̇ξ̄α̇. (2.14)

Transformations (2.3) close in the algebra

[δξ , δη] = −2i(ησmξ̄ − ξσmη̄)∂m. (2.15)

We next consider the product of two superfields defined as

F · G = µ{F ⊗ G}, (2.16)
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where the bilinear map µ maps the tensor product to the space of functions. The trans-

formation law of the product (2.16) is given by

δξ(F · G) = (ξQ + ξ̄Q̄)(F · G),

= (δξF ) · G + F · (δξG). (2.17)

The first line tells us that the product of two superfields is a superfield again. The second

line is the usual Leibniz rule.

All these properties we sumarise in the language of Hopf algebras [7], which will be

useful when we introduce a deformation of the superspace. The Hopf algebra of undeformed

SUSY transformations is given by

• algebra

[δξ, δη ] = −2i(ησmξ̄ − ξσmη̄)∂m, [∂m, ∂n] = [∂m, δξ ] = 0.

• coproduct

∆(δξ) = δξ ⊗ 1 + 1 ⊗ δξ, ∆∂m = ∂m ⊗ 1 + 1 ⊗ ∂m. (2.18)

• counit and antipode

ε(δξ) = ε(∂m) = 0, S(δξ) = −δξ, S(∂m) = −∂m. (2.19)

In the language of generators Qα and Q̄α̇ this Hopf algebra reads

• algebra

{Qα, Qβ} = {Q̄α̇, Q̄
β̇
} = 0, {Qα, Q̄

β̇
} = 2iσm

αβ̇
∂m,

[∂m, ∂n] = [∂m, Qα] = [∂m, Q̄α̇] = 0. (2.20)

• coproduct

∆Qα = Qα ⊗ 1 + 1 ⊗ Qα, ∆Q̄α̇ = Q̄α̇ ⊗ 1 + 1 ⊗ Q̄α̇,

∆∂m = ∂m ⊗ 1 + 1 ⊗ ∂m. (2.21)

• counit and antipode

ε(Qα) = ε(Q̄α̇) = ε(∂m) = 0,

S(Qα) = −Qα, S(Q̄α̇) = −Q̄α̇, S(∂m) = −∂m. (2.22)
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3. Twisted SUSY transformations

As in [17] we introduce the deformed SUSY transformations by twisting the usual Hopf

algebra (2.18). For the twist F we choose

F = e
1

2
Cαβ∂α⊗∂β+ 1

2
C̄

α̇β̇
∂̄α̇⊗∂̄β̇

, (3.1)

with Cαβ = Cβα a complex constant matrix. Note that Cαβ and C̄ α̇β̇ are related by the

usual complex conjugation. It was shown in [18] that (3.1) satisfies all the requirements

for a twist [19]. The twisted Hopf algebra of SUSY transformation now reads

• algebra

{Qα, Qβ} = {Q̄α̇, Q̄
β̇
} = 0, {Qα, Q̄

β̇
} = 2iσm

αβ̇
∂m,

[∂m, ∂n] = [∂m, ∂α] = [∂m, ∂̄
β̇
] = [∂m, Qα] = [∂m, Q̄α̇] = 0,

{∂α, ∂β} = {∂α, ∂̄
β̇
} = {∂̄α̇, ∂̄

β̇
} = {∂α, Qβ} = {∂̄α̇, Q̄β̇} = 0, (3.2)

{∂α, Q̄α̇} = −iσm
αβ̇

εβ̇α̇∂m, {∂̄α̇, Qα} = −iσm
αα̇∂m.

• coproduct

∆F(Qα) = F
(
Qα ⊗ 1 + 1 ⊗ Qα

)
F−1

= Qα ⊗ 1 + 1 ⊗ Qα

− i

2
C̄

α̇β̇

(
σm

αγ̇εγ̇α̇∂m ⊗ ∂̄β̇ + ∂̄α̇ ⊗ σm
αγ̇εγ̇β̇∂m

)
,

∆F(Q̄α̇) = Q̄α̇ ⊗ 1 + 1 ⊗ Q̄α̇ (3.3)

+
i

2
Cαβ

(
σm

αα̇∂m ⊗ ∂β + ∂α ⊗ σm
βα̇∂m

)
,

∆∂m = ∂m ⊗ 1 + 1 ⊗ ∂m,

∆∂α = ∂α ⊗ 1 + 1 ⊗ ∂α, ∆∂̄α̇ = ∂̄α̇ ⊗ 1 + 1 ⊗ ∂̄α̇.

• counit and antipode

ε(Qα) = ε(Q̄α̇) = ε(∂m) = ε(∂α) = ε(∂̄α̇) = 0,

S(Qα) = −Qα, S(Q̄α̇) = −Q̄α̇,

S(∂m) = −∂m, S(∂α) = −∂α, S(∂̄α̇) = −∂̄α̇. (3.4)

Note that only the coproduct is changed, while the algebra stays the same as in the un-

deformed case. This means that the full supersymmetry is preserved. Also note that in

order for the comultiplication for Qα and Q̄α̇ to close in the algebra, we had to enlarge the

algebra by introducing the fermionic derivatives ∂α and ∂̄α̇.

The inverse of the twist (3.1)

F−1 = e−
1

2
Cαβ∂α⊗∂β−

1

2
C̄

α̇β̇
∂̄α̇⊗∂̄β̇

, (3.5)

– 5 –



J
H
E
P
1
2
(
2
0
0
7
)
0
5
9

defines a new product on the algebra of functions of supercoordinates called the ⋆-product.

For two arbitrary superfields F and G the ⋆-product is defined as follows

F ⋆ G = µ⋆{F ⊗ G}
= µ{F−1 F ⊗ G}
= µ{e−

1

2
Cαβ∂α⊗∂β−

1

2
C̄

α̇β̇
∂̄α̇⊗∂̄β̇

F ⊗ G} (3.6)

= F · G − 1

2
(−1)|F |Cαβ(∂αF ) · (∂βG) − 1

2
(−1)|F |C̄

α̇β̇
(∂̄α̇F )(∂̄β̇G)

−1

8
CαβCγδ(∂α∂γF ) · (∂β∂δG) − 1

8
C̄α̇β̇C̄γ̇δ̇(∂̄

α̇∂̄γ̇F )(∂̄β̇ ∂̄ δ̇G)

−1

4
CαβC̄

α̇β̇
(∂α∂̄α̇F )(∂β ∂̄β̇G)

+
1

16
(−1)|F |CαβCγδC̄

α̇β̇
(∂α∂γ ∂̄α̇F )(∂β∂δ∂̄

β̇G)

+
1

16
(−1)|F |CαβC̄α̇β̇C̄γ̇δ̇(∂α∂̄α̇∂̄γ̇F )(∂β ∂̄β̇ ∂̄ δ̇G)

+
1

64
CαβCγδC̄

α̇β̇
C̄

γ̇δ̇
(∂α∂γ ∂̄α̇∂̄γ̇F )(∂β∂δ∂̄

β̇ ∂̄ δ̇G), (3.7)

where |F | = 1 if F is odd (fermionic) and |F | = 0 if F is even (bosonic). In the second

line the definition of the multiplication µ⋆ is given. No higher powers of Cαβ and C̄
α̇β̇

appear since the derivatives ∂α and ∂̄α̇ are Grassmanian. Expansion of the ⋆-product (3.7)

ends after the 4th order in the deformation parameter. This is different from the case

of the Moyal-Weyl ⋆mw-product [2, 20] where the expansion in powers of the deformation

parameter leads to an infinite power series. One should also note that the ⋆-product (3.7)

is hermitian,

(F ⋆ G)∗ = G∗ ⋆ F ∗, (3.8)

where ∗ denotes the usual complex conjugation. This is important for the construction of

physical models.

The ⋆-product (3.7) gives

{θα ⋆, θβ} = Cαβ, {θ̄α̇
⋆, θ̄

β̇
} = C̄

α̇β̇
, {θα ⋆, θ̄α̇} = 0,

[xm ⋆, xn] = 0, [xm ⋆, θα] = 0, [xm ⋆, θ̄α̇] = 0. (3.9)

Note that the chiral coordinates ym do not commute in this setting, but instead fulfill

[ym ⋆, yn] = −θθC̄ α̇β̇ε
β̇γ̇

(σ̄mn)γ̇α̇ − θ̄θ̄εαβCβγ(σmn) α
γ ,

[ym ⋆, θα] = iCαβσm
ββ̇

θ̄β̇, [ym ⋆, θ̄α̇] = iθασm
αβ̇

C̄ β̇α̇. (3.10)

Relations (3.9) enable us to define the deformed superspace or ”nonanticommutative

space”. It is generated by the usual bosonic and fermionic coordinates (2.1) while the

deformation is contained in the new product (3.7).

The deformed infinitesimal SUSY transformation is defined in the following way

δ⋆
ξF = (ξQ + ξ̄Q̄)F

= X⋆
ξQ ⋆ F + X⋆

ξ̄Q̄
⋆ F. (3.11)

– 6 –
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Differential operators X⋆
ξQ and X⋆

ξ̄c
are given by

X⋆
ξQ = ξα

(
Qα +

1

2
C̄

β̇γ̇
(∂̄β̇Qα)∂̄γ̇

)

= ξα

(
Qα +

i

2
C̄

β̇γ̇
σm

αα̇εα̇β̇∂m∂̄γ̇

)
, (3.12)

X⋆
ξ̄Q̄

= ξ̄α̇

(
Q̄α̇ +

1

2
Cαβ(∂αQ̄α̇)∂β

)

= ξ̄α̇

(
Q̄α̇ − i

2
Cαβσm

αγ̇∂m∂β

)
. (3.13)

Note that X⋆ operators close in the following algebra

{X⋆
Qα

⋆, X⋆
Qβ

} = {X⋆
Q̄α̇

⋆, X⋆

Q̄β̇
} = 0, {X⋆

Qα

⋆, X⋆

Q̄β̇
} = 2iσm

αα̇∂m. (3.14)

This is just a different way of writing the algebra (3.2). Differential operators X⋆ are

mentioned in [11], however no detailed analysis is preformed. In [21] the authors discuss

the Supersymmetric Quantum Mechanics with odd-parameters being Clifford-valued and

the operators similar to (3.12) and (3.13) arise.

The deformed coproduct (3.3) insures that the ⋆-product of two superfields is again a

superfield. Its transformation law is given by

δ⋆
ξ (F ⋆ G) = (ξQ + ξ̄Q̄)(F ⋆ G), (3.15)

= µ⋆{∆F (δ⋆
ξ )F ⊗ G)},

with

∆F (δ⋆
ξ ) = F

(
δ⋆
ξ ⊗ 1 + 1 ⊗ δ⋆

ξ

)
F−1

= δ⋆
ξ ⊗ 1 + 1 ⊗ δ⋆

ξ +
i

2
Cαβ

(
ξ̄γ̇σm

αγ̇∂m ⊗ ∂β + ∂β ⊗ ξ̄γ̇σm
αγ̇∂m

)

− i

2
C̄

α̇β̇

(
ξασm

αγ̇εγ̇α̇∂m ⊗ ∂̄β̇ + ∂̄α̇ ⊗ ξασm
αγ̇εγ̇β̇∂m

)
.

This gives

δ⋆
ξ (F ⋆ G) = (δ⋆

ξF ) ⋆ G + F ⋆ (δ⋆
ξG)

+
i

2
Cαβ

(
ξ̄γ̇σm

αγ̇(∂mF ) ⋆ (∂βG) + (∂αF ) ⋆ ξ̄γ̇σm
βγ̇(∂mG)

)
(3.16)

− i

2
C̄

α̇β̇

(
ξασm

αγ̇εγ̇α̇(∂mF ) ⋆ (∂̄β̇G) + (∂̄α̇F ) ⋆ ξασm
αγ̇εγ̇β̇(∂mG)

)
.

4. Chiral fields

Having established the general properties of the introduced deformation we now turn to

one special example, namely we study chiral fields. In the undeformed theory chiral fields

form a subalgebra of the algebra of superfields. In the deformed case this will no longer be

the case.

– 7 –
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A chiral field Φ fulfills D̄α̇Φ = 0, where D̄α̇ = −∂̄α̇ − iθασm
αα̇∂m is the supercovariant

derivative. In terms of component fields the chiral superfield Φ is given by

Φ(x, θ, θ̄) = A(x) +
√

2θαψα(x) + θθH(x) + iθσlθ̄(∂lA(x))

− i√
2
θθ(∂mψα(x))σm

αα̇θ̄α̇ +
1

4
θθθ̄θ̄(¤A(x)). (4.1)

Under the infinitesimal SUSY transformations (2.3) component fields transform as fol-

lows [16]

δξA =
√

2ξψ, (4.2)

δξψα = i
√

2σm
αα̇ξ̄α̇(∂mA) +

√
2ξαH, (4.3)

δξH = i
√

2ξ̄σ̄m(∂mψ). (4.4)

The ⋆-product of two chiral fields reads

Φ ⋆ Φ = A2 − C2

2
H2 +

1

4
CαβC̄ α̇β̇σm

αα̇σl
ββ̇

(∂mA)(∂lA) +
1

64
C2C̄2(¤A)2

+θα
(
2
√

2ψαA − 1√
2
CγβC̄ α̇β̇εγα(∂mψρ)σm

ρβ̇
σl

βα̇(∂lA)
)

− i√
2
C2θ̄α̇σ̄mα̇α(∂mψα)H + θθ

(
2AH − ψψ

)

+θ̄θ̄
(
− C2

4
(H¤A − 1

2
(∂mψ)σmσ̄l(∂lψ))

)

+iθσmθ̄
(
(∂mA2) +

1

4
CαβC̄ α̇β̇σmαα̇σl

ββ̇
(¤A)(∂lA)

)

+i
√

2θθθ̄α̇σ̄mα̇α(∂m(ψαA)) +
1

4
θθθ̄θ̄(¤A2), (4.5)

where C2 = CαβCγδεαγεβδ and C̄2 = C̄
α̇β̇

C̄
γ̇δ̇

εα̇γ̇εβ̇δ̇. One sees that due to the θ̄ and the

θ̄θ̄ terms (4.5) is not a chiral field. However, in order to write an action invariant under

the deformed SUSY transformations (3.11) we need to preserve the notion of chirality.

This can be done in different ways. One possibility is to use a different ⋆-product, the one

which preserves chirality [13]. However, chirality-preserving ⋆-product implies working in

Euclidean space where θ̄ 6= (θ)∗. Since we want to work in Minkowski space-time we use the

⋆-product (3.7) and decompose ⋆-products of superfields into their irreducible components

by using the projectors defined in [16].

The chiral, antichiral and transversal projectors are defined as follows

P1 =
1

16

D2D̄2

¤
, (4.6)

P2 =
1

16

D̄2D2

¤
, (4.7)

PT = −1

8

DD̄2D

¤
. (4.8)

In order to calculate irreducible components of the ⋆-products of chiral superfields, we

first apply the projectors (4.6)–(4.8) to the superfield F (2.2). From the definition of the
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supercovariant derivatives

Dα = ∂α + iσm
αα̇θ̄α̇∂m, (4.9)

D̄α̇ = −∂̄α̇ − iθασm
αα̇∂m, (4.10)

follows

D2 = DαDα = −εαβ∂α∂β + 2iεαβσm
ββ̇

θ̄β̇∂α∂m − θ̄θ̄¤, (4.11)

D̄2 = D̄α̇D̄α̇ = εα̇β̇ ∂̄α̇∂̄
β̇

+ 2iθασm
αα̇εα̇β̇ ∂̄

β̇
∂m − θθ¤. (4.12)

Let us start with P2 and calculate first

D2F = −4m − 2θ̄α̇

(
2λ̄α̇ + iσ̄mα̇α(∂mφα)

)
+ 4iθσlθ̄(∂lm)

−θ̄θ̄
(
4d + ¤f − 2i(∂mvm)

)

−θ̄θ̄θα
(
2iσm

αα̇(∂mλ̄α̇) + (¤φα)
)
− θθθ̄θ̄(¤m). (4.13)

Then we have

D̄2D2F = 4
(
4d + ¤f − 2i(∂mvm)

)
+ 8θα

(
2iσm

αα̇(∂mλ̄α̇) + (¤φα)
)

+16θθ(¤m) + 4iθσlθ̄
(
4∂ld + ∂l¤f − 2i(∂m∂lv

m)
)

+4θθθ̄α̇

(
2¤λ̄α̇ + iσ̄mα̇α(∂m¤φα)

)

+θθθ̄θ̄
(
4¤d + ¤

2f − 2i¤∂mvm
)
. (4.14)

This gives

P2F =
1

16

D̄2D2

¤
F

=
1

¤

(
d − i

2
(∂mvm) +

1

4
¤f

)
+
√

2θα

(
i√
2¤

σm
αα̇(∂mλ̄α̇) +

1

2
√

2
φα

)

+θθm + iθσlθ̄∂l

(
d

¤
− i

2¤
(∂mvm) +

1

4
f

)
(4.15)

+
1√
2
θθθ̄α̇

(
1√
2
λ̄α̇ +

i

2
√

2
σ̄mα̇α(∂mφα)

)
+

1

4
θθθ̄θ̄

(
d − i

2
(∂mvm) +

1

4
¤f

)
.

The superfield (4.15) is a chiral field with the components

scalar: A =
1

¤

(
d − i

2
(∂mvm) +

1

4
¤f

)
, (4.16)

spinor: ψα =
i√
2¤

σm
αα̇(∂mλ̄α̇) +

1

2
√

2
φα, (4.17)

auxiliary field: H = m. (4.18)

In general, some of these component fields will be nonlocal due to 1/¤ in the definition of

the projector P2.
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A calculation analogous to the previous one leads to

P1F =
1

16

D2D̄2

¤
F

=
1

¤

(
d +

i

2
(∂mvm) +

1

4
¤f

)
+

√
2θ̄α̇

(
i√
2¤

σ̄mα̇α(∂mϕα) +
1

2
√

2
χ̄α̇

)

+θ̄θ̄n − iθσlθ̄∂l

(
d

¤
+

i

2¤
(∂mvm) +

1

4
f

)
(4.19)

− 1√
2
θ̄θ̄θα

(
1√
2
ϕα − i

2
√

2
σm

αα̇(∂mχ̄α̇)

)
+

1

4
θθθ̄θ̄

(
d +

i

2
(∂mvm) +

1

4
¤f

)
,

which is an antichiral field with the components

scalar: Ã =
1

¤

(
d +

i

2
(∂mvm) +

1

4
¤f

)
, (4.20)

spinor: ψ̃
α̇

=
i√
2¤

σ̄mα̇α(∂mϕα) +
1

2
√

2
χ̄α̇, (4.21)

auxiliary field: H̃ = n. (4.22)

For the completeness we give the action of the transversal projector PT on the super-

field (2.2). It follows from the identity

PT = I − P1 − P2. (4.23)

By using (4.15) and (4.19) we obtain

PT F =
1

2
f − 2

¤
d + θα

(
1

2
φα − i

1

¤
σm

αα̇∂mλ̄α̇

)

+θ̄α̇

(
1

2
χ̄α̇ − i

1

¤
σ̄mα̇α∂mϕα

)
+ θσmθ̄

(
vm − 1

¤
∂m∂lv

l

)

+θθθ̄α̇

(
1

2
λ̄α̇ − i

4
σ̄mα̇α(∂mφα)

)
+ θ̄θ̄θα

(
1

2
ϕα − i

4
σm

αα̇(∂mχ̄α̇)

)

+
1

4
θθθ̄θ̄

(
2d − 1

2
¤f

)
. (4.24)

5. Deformed Wess-Zumino Lagrangian

In the undeformed theory, Wess-Zumino Lagrangian is given by

L = Φ+ · Φ
∣∣∣
θθθ̄θ̄

+
(m

2
Φ · Φ

∣∣∣
θθ

+
λ

3
Φ · Φ · Φ

∣∣∣
θθ

+ c.c.
)
, (5.1)

where m and λ are real constants, Φ is a chiral field and Φ+ is an antichiral field with

(Φ+)+ = Φ. This Lagrangian leads to the SUSY invariant action which describes an

interacting theory of two complex scalar fields and one spinor field. To see this explicitly

we look at each term separately. This analysis is well known but we repeat it nevertheless

to prepare for the analysis of the deformed Wess-Zumino Lagrangian.
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The kinetic term is given by the highest component of the product Φ+ · Φ:

Φ+ · Φ
∣∣∣
θθθ̄θ̄

= A∗
¤A + i(∂mψ̄)σ̄mψ + H∗H. (5.2)

Since Φ+ · Φ is a superfield, its highest component has to transform as a total deriva-

tive, (2.14).

Next we look at the mass term. It is given by the θθ component of Φ · Φ and the θ̄θ̄

component of Φ+ · Φ+:

m

2

(
Φ · Φ

∣∣∣
θθ

+ Φ+ · Φ+
∣∣∣
θ̄θ̄

)
=

m

2

(
2AH − ψψ + 2A∗H∗ − ψ̄ψ̄

)
. (5.3)

As the pointwise product of two chiral/antichiral fields is a chiral/antichiral field, its θθ/θ̄θ̄

component transforms as a total derivative (4.4). Note that this is not the case with the

general superfield (2.9). Also note that the highest components of Φ · Φ and Φ+ · Φ+

transform as total derivatives. However, these terms are total derivatives themselves (4.1)

and will not contribute to the equations of motion.

The same arguments apply for the interaction term, since Φ ·Φ ·Φ is a chiral field again

and Φ+ · Φ+ · Φ+ is an antichiral field. The interaction term reads

λ

3

(
Φ · Φ · Φ

∣∣∣
θθ

+ Φ+ · Φ+ · Φ+
∣∣∣
θ̄θ̄

)
=

λ

3

(
HA2 − Aψψ + H∗(A∗)2 − A∗ψ̄ψ̄

)
. (5.4)

Thus, we see that chirality plays an important role in the construction of a SUSY invariant

action.

We are interested in a deformation of (5.1) which is consistent with the deformed

SUSY transformations (3.11) and which in the limit Cαβ → 0 gives the undeformed La-

grangian (5.1).

We propose the following Lagrangian

L = Φ+ ⋆ Φ
∣∣∣
θθθ̄θ̄

+

(
m

2
P2(Φ ⋆ Φ)

∣∣∣
θθ

+
λ

3
P2

(
Φ ⋆ P2(Φ ⋆ Φ)

)∣∣∣
θθ

+ c.c

)
, (5.5)

where m and λ are real constants. Let us analyse (5.5) term by term again.

Kinetic term in (5.5) is a straightforward deformation of the usual kinetic term obtained

by inserting the ⋆-product instead the usual pointwise multiplication. Due to the deformed

coproduct (3.3), Φ+ ⋆ Φ is a superfield and its highest component transforms as a total

derivative. The explicit calculation gives

Φ+ ⋆ Φ
∣∣∣
θθθ̄θ̄

= A∗
¤A + i(∂mψ̄)σ̄mψ + H∗H, (5.6)

δ⋆
ξ

(
Φ+ ⋆ Φ

∣∣∣
θθθ̄θ̄

)
= ∂m

(
1

2
√

2
(A∗(∂lψ

α) − (∂lA
∗)ψα)(σlσ̄m) β

α +
i√
2
Hψ̄α̇σ̄mα̇β

)
ξβ

+ξ̄α̇∂m

(
1

2
√

2
(σ̄mσl)α̇

β̇
(ψ̄β̇(∂lA) − (∂lψ̄

β̇)A) +
i√
2
σ̄mα̇αH∗ψα

)
.(5.7)

To obtain (5.6), the partial integration was used. We see from (5.6) that the deformation

is absent, the kinetic term remains undeformed.1

1In the case of the Moyal-Weyl ⋆-product we have
R

d4x f ⋆mwg =
R

d4x g⋆mwf =
R

d4x f ·g. Therefore,

the free actions for scalar and spinor fields remain undeformed automatically.
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Since Φ ⋆ Φ is not a chiral field we have to project its chiral part. This projection is

given by

P2(Φ ⋆ Φ) = A2 − C2

8
H2 +

1

256
C2C̄2(¤A)2

+
1

16
CαβC̄ α̇β̇σm

αα̇σl
ββ̇

(
(∂mA)(∂lA) +

2

¤
∂m((¤A)(∂lA))

)

+
√

2θα

(
2ψαA − 1

4
CγβC̄ α̇β̇εγα(∂mψρ)σm

ρβ̇
σl

βα̇(∂lA)

)
+ θθ

(
2AH − ψψ

)

+iθσkθ̄∂k

[
A2 − C2

8
H2 +

1

256
C2C̄2(¤A)2

+
1

16
CαβC̄ α̇β̇σm

αα̇σl
ββ̇

(
(∂mA)(∂lA) +

2

¤
∂m((¤A)(∂lA))

)]

+i
√

2θθθ̄α̇σ̄kα̇α∂k

(
ψαA − 1

8
CγβC̄ α̇β̇εγα(∂mψρ)σm

ρβ̇
σl

βα̇(∂lA)

)

+
1

4
θθθ̄θ̄¤

[
A2 − C2

8
H2 +

1

256
C2C̄2(¤A)2

+
1

16
CαβC̄ α̇β̇σm

αα̇σl
ββ̇

(
(∂mA)(∂lA) +

2

¤
∂m((¤A)(∂lA))

)]
. (5.8)

For the action we take the θθ component of (5.8),

P2(Φ ⋆ Φ)
∣∣∣
θθ

= 2AH − ψψ. (5.9)

Its transformation law is given by

δ⋆
ξ

(
P2(Φ ⋆ Φ)

∣∣∣
θθ

)
= 2i

√
2ξ̄σ̄m∂m(Aψ). (5.10)

In a similar way we add the θ̄θ̄ component of P1(Φ
+ ⋆ Φ+). This component is given by

P1(Φ
+ ⋆ Φ+)

∣∣∣
θ̄θ̄

= 2A∗H − ψ̄ψ̄, (5.11)

which is just the complex conjugate of (5.9) due to the hermiticity of the ⋆-product (3.7).

Again, no deformation is present: the free action remains undeformed. That leads to the

propagators which are the same as in the undeformed theory.

Finally we come to the interaction term. There are few possibilities to project the

chiral part of Φ ⋆ Φ ⋆ Φ. We take the following projection2

Φ ⋆ Φ ⋆ Φ → P2

(
Φ ⋆ (P2(Φ ⋆ Φ))

)
. (5.12)

2Naively, one would take P2(Φ ⋆ Φ ⋆ Φ)
˛

˛

˛

θθ
. Despite the fact that P2(Φ ⋆ Φ ⋆ Φ) is a chiral field, its θθ

component does not transform as a total derivative and would not lead to a SUSY invariant action. This

strange situation arises because of the 1/¤ term in the projector P2.
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As the complete result is very long we write here only the θθ component

P2

(
Φ ⋆ (P2(Φ ⋆ Φ))

)∣∣∣
θθ

= 3(A2H − (ψψ)A) − C2

8
H3 +

1

256
C2C̄2H(¤A)2

+
1

16
CαβC̄ α̇β̇σm

αα̇σl
ββ̇

H

(
(∂mA)(∂lA) +

2

¤
∂m((¤A)(∂lA))

)

+
1

4
CγβC̄ α̇β̇Hσl

βα̇ψγ(∂mψρ)σm
ρβ̇

(∂lA) (5.13)

+
1

2
C̄

α̇β̇
(σ̄lm)β̇γ̇εγ̇α̇(∂mA)∂l

[
A2 − C2

8
H2

+
1

16
CαβC̄ α̇β̇σs

αα̇σp

ββ̇
H

(
(∂sA)(∂pA) +

2

¤
∂s((¤A)(∂pA))

)]
.

In the limit Cαβ → 0 (5.13) reduces to the usual interaction term (5.4). The deformation is

present trough the terms that are of first, second and higher orders in Cαβ and C̄α̇β̇ . Note

that under the integral the last term reduces to a total derivative and therefore will not

contribute to the equations of motion. Also note that if we calculate P2

(
(P2(Φ ⋆ Φ)) ⋆ Φ

)

instead of (5.12) the only difference will be in the sign of the above-mentioned last term.

We therefore conclude that we can take any combination of these two terms, as long as

the limit Cαβ → 0 reproduces the undeformed interaction term. For simplicity we take

only (5.13).

The transformation law of (5.13) is given by

δ⋆
ξ

(
P2

(
Φ ⋆ (P2(Φ ⋆ Φ))

)∣∣∣
θθ

)
=

i
√

2ξ̄α̇σ̄lα̇α∂l

(
1

8
CγβC̄ γ̇β̇σm

γγ̇σn
ββ̇

ψα
1

¤
∂m(∂nA¤A) + local terms

)
. (5.14)

The SUSY transformation is a total derivative and reduces to a surface term under the

integral, leading to a SUSY invariant interaction term. However, one should be careful

as (5.14) contains a non-local term. Under the integral it is proportional to

∫
d4x σ̄lα̇α∂l

(
ψα

1

¤
∂m(∂nA¤A)

)
=

∮
dΣl σ̄lα̇α

(
ψα

1

¤
∂m(∂nA¤A)

)
.

If the boundary surface Σl is at infinity and fields fall off fast enough this integral vanishes.

To rewrite (5.13) in a more compact way we introduce the following notation

Cαβ = Kab(σ
abε)αβ , (5.15)

C̄
α̇β̇

= K∗
ab(εσ̄

ab)
α̇β̇

, (5.16)

where Kab = −Kba is an antisymmetric complex constant matrix. Then we have

C2 = 2KabK
ab, C̄2 = 2K∗

abK
∗ab, KabK∗

ab = 0 , (5.17)

K∗
cdKab(σ

nσ̄cdσ̄mσab) β
α = −4δβ

αKmaK∗n
a + 8KmaK∗nb(σba)

β
α , (5.18)

CαβC̄ α̇β̇σm
αα̇σl

ββ̇
= 8KamK∗ l

a . (5.19)
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By using the previous expressions the term (5.13) can be rewritten in the form

P2

(
Φ ⋆ (P2(Φ ⋆ Φ))

)∣∣∣
θθ

= 3(A2H − (ψψ)A) − 1

4
KabKabH

3

+
1

64
KabKabK

∗cdK∗
cdH(¤A)2 (5.20)

+
1

2
Km

lK
∗nlH

(
(∂mA)(∂nA) +

2

¤
∂m((¤A)(∂nA))

)

−
(
Km

lK
∗nlψ(∂nψ) − 2Km

aK
∗n

c(∂nψ)σcaψ
)
(∂mA).

Finally, the deformed SUSY invariant Lagrangian is given by

L = Φ+ ⋆ Φ
∣∣∣
θθθ̄θ̄

+

(
m

2
P2(Φ ⋆ Φ)

∣∣∣
θθ

+
λ

3
P2

(
Φ ⋆ P2(Φ ⋆ Φ)

)∣∣∣
θθ

+ c.c

)

= A∗
¤A + i(∂mψ̄)σ̄mψ + H∗H

+
m

2

(
2AH − ψψ + 2A∗H∗ − ψ̄ψ̄

)

+λ
(
HA2 − Aψψ + H∗(A∗)2 − A∗ψ̄ψ̄

)

−λ

3

(
Km

aK
∗naψ(∂nψ) − 2Km

aK
∗n

b(∂nψ)σbaψ
)
(∂mA)

−λ

3

(
Km

aK
∗naψ̄(∂nψ̄) − 2K∗m

aKn
bψ̄σ̄ab(∂nψ̄)

)
(∂mA∗)

− λ

12
KmnKmnH3 − λ

12
K∗mnK∗

mn(H∗)3

+
λ

6
Km

lK
∗nl

(
H(∂mA)(∂nA) + H∗(∂mA∗)(∂nA∗)

)

+
λ

3
Km

lK
∗nl

[
H

1

¤
∂m

(
(∂nA)¤A

)
+ H∗ 1

¤
∂m

(
(∂nA∗)¤A∗

)]

+
λ

192
KabKabK

∗cdK∗
cd

(
H(¤A)2 + H∗(¤A)∗

)
, (5.21)

where the partial integration was used to rewrite some of the terms in (5.21) in a more

compact way.

6. Equations of motion

By varying the action which follows from the Lagrangian (5.21) with respect to the fields

H and H∗ we obtain the equations of motion

H∗ + mA + λA2 − λ

4
KabKabH

2 +
λ

6
Km

lK
∗nl(∂mA)(∂nA)

+
λ

3
Km

lK
∗nl 1

¤
∂m((∂nA)¤A) +

λ

192
KabKabK

∗cdK∗
cd(¤A)2 = 0, (6.1)

H + mA∗ + λ(A∗)2 − λ

4
K∗cdK∗

cd(H
∗)2 +

λ

6
Km

lK
∗nl(∂mA∗)(∂nA∗)

+
λ

3
Km

lK
∗nl 1

¤
∂m((∂nA∗)¤A∗) +

λ

192
KabKabK

∗cdK∗
cd(¤A∗)2 = 0. (6.2)
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Unlike the undeformed theory, equations (6.1) and (6.2) are nonlinear in H and H∗. Nev-

ertheless, they can be solved perturbatively. The solutions are given by

H∗ = −mA − λA2 +
λ

4
KabKab(mA∗ + λ(A∗)2)2

−λ

6
Km

lK
∗nl(∂mA)(∂nA) − λ

3
Km

lK
∗nl 1

¤
∂m((∂nA)¤A)

− λ

192
KabKabK

∗cdK∗
cd(¤A)2

+
λ

2
KabKab(mA∗ + λ(A∗)2)

[
λ

6
Km

lK
∗nl(∂mA∗)(∂nA∗) (6.3)

+
λ

3
Km

lK
∗nl 1

¤
∂m((∂nA∗)¤A∗) +

λ

4
K∗cdK∗

cd(mA + λA2)2
]

+ O(K6),

H = −mA∗ − λ(A∗)2 +
λ

4
K∗cdK∗

cd(mA + λA2)2 − λ

6
Km

lK
∗nl(∂mA∗)(∂nA∗)

−λ

3
Km

lK
∗nl 1

¤
∂m((∂nA∗)¤A∗) − λ

192
KabKabK

∗cdK∗
cd(¤A∗)2

+
λ

2
K∗cdK∗

cd(mA + λA2)

[
λ

6
Km

lK
∗nl(∂mA)(∂nA) (6.4)

+
λ

3
Km

lK
∗nl 1

¤
∂m((∂nA)¤A) +

λ

4
KabKab(mA∗ + λ(A∗)2)2

]
+ O(K6).

These solutions can be used to eliminate the auxiliary fields H and H∗ from the La-

grangian (5.21). This gives

L = L0 + L2 + L4 + O(K6) , (6.5)

with

L0 = A∗
¤A + i(∂mψ̄)σ̄mψ − λA∗ψ̄ψ̄ − λAψψ − m

2
(ψψ + ψ̄ψ̄)

−m2A∗A − mλA(A∗)2 − mλA∗A2 − λ2A2(A∗)2 , (6.6)

L2 =
λ

3
Km

lK
∗nl

(
m(∂mA) + 2λA(∂mA)

) 1

¤
((∂nA∗)¤A∗)

+
λ

3
Km

lK
∗nl

(
m(∂mA∗) + 2λA∗(∂mA∗)

) 1

¤
((∂nA)¤A)

+
λ

12
KabKab

(
mA∗ + λ(A∗)2

)3
+

λ

12
K∗cdK∗

cd

(
mA + λA2

)3

−λ

6
Km

lK
∗nl

(
(mA + λA2)(∂mA∗)(∂nA∗) + (mA∗ + λ(A∗)2)(∂mA)(∂nA)

)

−λ

3

(
Km

lK
∗nlψ(∂nψ) − 2Km

aK
∗n

b(∂nψ)σbaψ
)
(∂mA)

−λ

3

(
Km

lK
∗nlψ̄(∂nψ̄) − 2Km

aK
∗n

bψ̄σ̄ab(∂nψ̄)
)
(∂mA∗), (6.7)

L4 =
λ2

24
Km

lK
∗nlKabKab

(
mA∗ + λ(A∗)2

)2
(∂mA∗)(∂nA∗)

+
λ2

24
Km

lK
∗nlK∗cdK∗

cd

(
mA + λA2

)2
(∂mA)(∂nA)
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− λ

192
KabKabK

∗mnK∗
mn(mA + λA2)(¤A∗)2

− λ

192
KabKabK

∗mnK∗
mn(mA∗ + λ(A∗)2)(¤A)2

− λ

16
KabKabK

∗cdK∗
cd

(
mA + λA2

)2(
mA∗ + λ(A∗)2

)2

−λ2

18
Km

lK
∗nlKpbK∗q

b

(
(∂mA∗)(∂nA∗)

) 1

¤
∂p

(
(∂qA)¤A

)

−λ2

18
Km

lK
∗nlKpbK∗q

b

(
(∂mA)(∂nA)

) 1

¤
∂p

(
(∂qA

∗)¤A∗
)

−λ2

6
Km

lK
∗nlKabKab(mA∗ + λ(A∗)2)

(
m(∂mA∗) + 2λA∗(∂mA∗)

) 1

¤

(
(∂nA∗)¤A∗

)

−λ2

6
Km

lK
∗nlK∗cdK∗

cd(mA + λA2)
(
m(∂mA) + 2λA(∂mA)

) 1

¤

(
(∂nA)¤A

)

−λ2

9
Km

lK
∗nlKp

bK
∗qb 1

¤
∂m

(
(∂nA)¤A

) 1

¤
∂p

(
(∂qA

∗)¤A∗
)

−λ2

36
Km

lK
∗nlKp

bK
∗qb(∂mA)(∂nA)(∂pA

∗)(∂qA
∗). (6.8)

7. Deformed Poincaré invariance

Before commenting on the Lagrangian (6.5) we shall analyze the consequences of the

twist (3.1) on Poincaré symmetry. As in the case of the θ-deformed space, the

sub(Hopf)algebra of translations remains undeformed [22]. Therefore we concentrate on

the Lorentz transformations and first review some well known facts and formulas.

Under the infinitesimal Lorentz transformations the coordinates of the superspace

transform as follows

δωxm = ωm
nxn, (7.1)

δωθα = ωmn(σmn) β
α θβ, (7.2)

δω θ̄α̇ = ωmn(σ̄mn)α̇
β̇
θ̄β̇, (7.3)

where ωmn = −ωnm are constant antisymmetric parameters.

The superfield F (2.2) is a scalar under the Lorentz transformations

F ′(x′, θ′, θ̄′) = F (x, θ, θ̄), (7.4)

or

δωF = F ′(x, θ, θ̄) − F (x, θ, θ̄)

=
1

2
ωmnLmnF (x, θ, θ̄)

=
1

2
ωmn

(
xm∂n − xn∂m − (σmnε)αβ(θα∂β + θβ∂α)

−(εσ̄mn)α̇β̇(θ̄α̇∂̄β̇ + θ̄β̇ ∂̄α̇)
)
F (x, θ, θ̄). (7.5)

– 16 –
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To calculate the last line in (7.5) we used (7.1), (7.2) and (7.3). Note that we use the same

notation for transformations of coordinates and for variation of fields. The meaning should

be clear from the context. Using the generators Lmn we can rewrite (7.1), (7.2) and (7.3)

in the following way

δωxm = ωm
nxn = −1

2
ωrsLrsx

m, (7.6)

δωθα = ωmn(σmn) β
α θβ = −1

2
ωmnLmnθα, (7.7)

δω θ̄α̇ = ωmn(σ̄mn)α̇
β̇
θ̄β̇ = −1

2
ωmnLmnθ̄α̇. (7.8)

Also,

δωθα = −ωmn(σmn) α
β θβ = −1

2
ωmnLmnθα. (7.9)

The Hopf algebra of the undeformed infinitesimal Lorentz transformations is given by

[δω, δω′ ] = δ[ω,ω′],

∆(δω) = δω ⊗ 1 + 1 ⊗ δω,

ε(δω) = 0, S(δω) = −δω. (7.10)

In terms of the generator Lmn the coproduct reads

∆(Lmn) = Lmn ⊗ 1 + 1 ⊗ Lmn. (7.11)

The twist F (3.1), when applied to (7.10), gives the Hopf algebra of the deformed

Lorentz transformations

[δω, δω′ ] = δ[ω,ω′],

∆F (δω) = F
(
δω ⊗ 1 + 1 ⊗ δω

)
F−1

= δω ⊗ 1 + 1 ⊗ δω

−1

2
Cαβωmn(∂α ⊗ (σmnε)βγ∂γ + (σmnε)αγ∂γ ⊗ ∂β)

−1

2
C̄

α̇β̇
ωmn(∂̄α̇ ⊗ (εσ̄mn)ρ̇σ̇εσ̇β̇ ∂̄ρ̇ + (εσ̄mn)ρ̇σ̇εσ̇α̇∂̄ρ̇ ⊗ ∂̄β̇),

ε(δω) = 0, S(δω) = −δω. (7.12)

The result for the deformed coproduct is the result to all orders, as all higher order terms

cancel since transformations (7.5) are linear in coordinates. The algebra is unchanged, but

the comultiplication, leading to the deformed Leibniz rule, changes. Form (7.12) one can

see that the comultiplication for the deformed Lorentz transformations does not close in

the algebra of Lorentz transformations, but in the bigger algebra with derivatives included.

Therefore, we cannot speak about the deformed Lorentz symmetry but instead we have to

work with the deformed Poincaré symmetry.

Now we give two examples for the application of the deformed Leibniz rule.

– 17 –
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• The ⋆-product of two Grassmanian coordinates should transform as in the unde-

formed case

δω(θα ⋆ θβ) = −1

2
ωmnLmn(θα ⋆ θβ)

=
1

2
ωmn(σmnε)γδ(θ

γ∂δ + θδ∂γ)

(
θαθβ +

1

2
Cαβ

)

= −ωmn
(
(σmn) α

γ θγθβ + (σmn) β
γ θαθγ

)
. (7.13)

In the second line the ⋆-product is expanded and the definition of Lmn given in (7.5)

is used. Using the deformed coproduct on the other hand gives

δω(θα ⋆ θβ) = (δωθα) ⋆ θβ + θα ⋆ (δωθβ)

−1

2
Cρσωmn

(
(∂ρθ

α) ⋆ (σmnε)σγ(∂γθβ)

+(σmnε)ργ(∂γθα) ⋆ (∂σθβ)
)

= −ωmn
(
(σmn) α

γ θγθβ + (σmn) β
γ θαθγ

)
. (7.14)

Comparing the results (7.13) and (7.14) we see that due to the deformed coproduct

θα ⋆ θβ transforms as in the undeformed case. This type of calculation can also be

done for ⋆-products of θ̄ coordinates with the same conclusions.

• When the ⋆-product of two chiral fields Φ1 and Φ2 is expanded, the term Cαβψ1αψ2β

appears. This term has to transform as a scalar field under the deformed Poncaré

transformations, since it comes from Φ1⋆Φ2 which is a scalar field (using the deformed

Leibniz rule of course).

Naively we have

δω(Cαβψ1αψ2β) = Cαβ
(
(δωψ1α)ψ2β + ψ1α(δωψ2β)

)

= Cαβωmn

(
(σmn) γ

α ψ1γψ2β + (σmn) γ
β ψ1αψ2γ

+
1

2
(xm∂n − xn∂m)(ψ1αψ2β)

)

6= 1

2
ωmnLmn(Cαβψ1αψ2β), (7.15)

with Lmn defined in (7.5). The equality sign in the last line can be achieved by

transforming the fields ψ1α and ψ2β not as spinor fields (as it was done in (7.15)) but

as scalar fields. The reason for this is that indices α and β are contracted with indices

on Cαβ. Namely, the twist F (3.1) is a globally defined object [23]. Therefore, under

the transformations (7.2) and (7.3) the derivatives ∂ and ∂̄ appearing in F transform

in the following way

δω∂α = δω∂̄α̇ = 0. (7.16)

Also, Cαβ and C̄ α̇β̇ (being complex constants) do not transform. Therefore, all indices

contracted with Cαβ and C̄ α̇β̇ should be understood as scalar (non-transforming)

indices.
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To convince ourselves that this is the right way of thinking let us rewrite Cαβψ1αψ2β

by using the ⋆-product and then use the deformed Leibniz rule to transform it

Cαβψ1αψ2β = −2θαψ1α ⋆ θβψ2β − θθψα
1 ψ2α

= −2θαψ1α ⋆ θβψ2β − (θα ⋆ θα)ψβ
1 ψ2β

δω(Cαβψ1αψ2β) = −2δω(θαψ1α ⋆ θβψ2β) − δω((θα ⋆ θα)ψβ
1 ψ2β). (7.17)

Note that ψβ
1 ⋆ ψ2β = ψβ

1 ψ2β . Also note that δω in this example is the variation of a

field as in (7.5). Therefore

δω(θαψ1α) = θαδω(ψ1α)

=
1

2
ωmnLmn(θαψ1α).

Let us calculate the transformation of the first term in (7.17)

δω(θαψ1α ⋆ θβψ2β) = (δω(θαψ1α)) ⋆ (θβψ2β) + (θαψ1α) ⋆ (δω(θβψ2β))

−1

2
Cρσωmn

(
(∂ρ(θ

αψ1α)) ⋆ (σmnε)σγ(∂γ(θβψ2β))

+(σmnε)ργ(∂γ(θαψ1α)) ⋆ (∂σ(θβψ2β))
)

=
1

2
ωmnLmn

(
θαψ1α ⋆ θβψ2β

)
. (7.18)

We conclude that θαψ1α⋆θβψ2β is a scalar field. Calculation similar to this shows that

(θα ⋆ θα)ψβ
1 ψ2β is also a scalar field. Thus, we have demonstrated that Cαβψ1αψ2β

really transforms as a scalar field.

8. Conclusions and outlook

The Lagrangian (6.5) is the final result of this paper. By construction this Lagrangian is

covariant under the deformed SUSY transformations (3.11) and leads to a deformed SUSY

invariant action. Note that it is the deformed Leibniz rule which enables this construction.

No new fields appear in the action, the deformation is present only trough some new

interaction terms. The deformation parameter plays the role of a coupling constant and

in the limit C → 0 the undeformed theory is obtained. If this leads to some new physics

remains to be understood by further analysis of our model.

At the moment we are interested in the renormalization properties of (6.5), first of

all in the cancellation of the quadratic divergences. Let us comment that it is possible to

choose a specific type of deformation, such that it leads to KabKab = K∗abK∗
ab = 0. This

choice takes the H3 term in (5.21) to zero and simplifies calculations drastically. More

important, renormalization properties of our model might turn out to be better with this

choice.

One should analyze microcausality of our theory since a non-local interaction term

appears in the action. Also, the construction of gauge theories on this deformed superspace

is planed for future research.
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Concerning different types of deformation, we also analyzed a model with F =

e
1

2
CαβDα⊗Dβ which leads to the deformation discussed in [12]. Comments on this work

are planed for the next publication.
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A. Klimyk and K. Schmüdgen, Quantum groups and their representations, Springer, Berlin,

Heidelberg (1997).
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